量子通信(量子通信原理)

频道:电子元器件 日期: 浏览:438

量子通信

本文内容来自于互联网,分享量子通信(量子通信原理)

量子通信(Quantum Teleportation)是指利用量子纠缠效应进行信息传递的一种新型的通讯方式。量子通讯是近二十年发展起来的新型交叉学科,是量子论和信息论相结合的新的研究领域。量子通信主要涉及:量子密码通信、量子远程传态和量子密集编码等,近来这门学科已逐步从理论走向实验,并向实用化发展。高效安全的信息传输日益受到人们的关注。基于量子力学的基本原理,量子通信具有高效率和绝对安全等特点,并因此成为国际上量子物理和信息科学的研究热点。


量子通信-基本简介 量子通信量子通信系统的基本部件包括量子态发生器、量子通道和量子测量装置。按其所传输的信息是经典还是量子而分为两类。前者主要用于量子密钥的传输,后者则可用于量子隐形传态和量子纠缠的分发。所谓隐形传送指的是脱离实物的一种“完全”的信息传送。从物理学角度,可以这样来想象隐形传送的过程:先提取原物的所有信息,然后将这些信息传送到接收地点,接收者依据这些信息,选取与构成原物完全相同的基本单元,制造出原物完美的复制品。但是,量子力学的不确定性原理不允许精确地提取原物的全部信息,这个复制品不可能是完美的。因此长期以来,隐形传送不过是一种幻想而已。

1993年,6位来自不同国家的科学家,提出了利用经典与量子相结合的方法实现量子隐形传态的方案:将某个粒子的未知量子态传送到另一个地方,把另一个粒子制备到该量子态上,而原来的粒子仍留在原处。其基本思想是:将原物的信息分成经典信息和量子信息两部分,它们分别经由经典通道和量子通道传送给接收者。经典信息是发送者对原物进行某种测量而获得的,量子信息是发送者在测量中未提取的其余信息;接收者在获得这两种信息后,就可以制备出原物量子态的完全复制品。该过程中传送的仅仅是原物的量子态,而不是原物本身。发送者甚至可以对这个量子态一无所知,而接收者是将别的粒子处于原物的量子态上。

在这个方案中,纠缠态的非定域性起着至关重要的作用。量子力学是非定域的理论,这一点已被违背贝尔不等式的实验结果所证实,因此,量子力学展现出许多反直观的效应。在量子力学中能够以这样的方式制备两个粒子态,在它们之间的关联不能被经典地解释,这样的态称为纠缠态,量子纠缠指的是两个或多个量子系统之间的非定域非经典的关联。量子隐形传态不仅在物理学领域对人们认识与揭示自然界的神秘规律具有重要意义,而且可以用量子态作为信息载体,通过量子态的传送完成大容量信息的传输,实现原则上不可破译的量子保密通信。

1997年,在奥地利留学的中国青年学者潘建伟与荷兰学者波密斯特等人合作,首次实现了未知量子态的远程传输。这是国际上首次在实验上成功地将一个量子态从甲地的光子传送到乙地的光子上。实验中传输的只是表达量子信息的“状态”,作为信息载体的光子本身并不被传输。最近,潘建伟及其合作者在如何提纯高品质的量子纠缠态的研究中又取得了新突破。为了进行远距离的量子态隐形传输,往往需要事先让相距遥远的两地共同拥有最大量子纠缠态。但是,由于存在各种不可避免的环境噪声,量子纠缠态的品质会随着传送距离的增加而变得越来越差。因此,如何提纯高品质的量子纠缠态是目前量子通信研究中的重要课题。

量子通信(量子通信原理)

国际上许多研究小组都在对这一课题进行研究,并提出了一系列量子纠缠态纯化的理论方案,但是没有一个是能用现有技术实现的。最近潘建伟等人发现了利用现有技术在实验上是可行的量子纠缠态纯化的理论方案,原则上解决了目前在远距离量子通信中的根本问题。这项研究成果受到国际科学界的高度评价,被称为“远距离量子通信研究的一个飞跃”。

量子通信(量子通信原理)

量子通信-研究突破 量子通信实验室据《新科学家》杂志等媒体综合报道,一支意大利和奥地利科学家小组宣布,他们首次识别出从地球上空1500公里处的人造卫星上反弹回地球的单批光子,实现了太空绝密传输量子信息的重大突破。这一突破标明在太空和地球之间可以构建安全的量子通道来传输信息,用于全球通信。此研究成果即将发表在《新物理学杂志》(New Journal of Physics)上。

意大利帕多瓦大学的保罗·维罗来斯和恺莎尔·巴伯利领导此研究小组,成功地利用意大利名为马泰拉(Matera)激光测距天文台的1.5米望远镜向地球上空1500公里处的日本阿吉沙(Ajisai)人造卫星发射出光子并让此卫星将这些光子反弹回到了原始出发地。这标志着无法偷听的量子编码通信可望通过人造卫星来实现。此消息将会大受全球通信公司和银行的欢迎。

2007年6月,一个由奥地利、英国、德国研究人员组成的小组在量子通信研究中通过创下了通信距离达144公里的最远纪录。而要达到更远的距离很难,因为大气容易干扰光子脆弱的量子状态。而巴伯利小组想出了解决办法,通过人造卫星来发送光子。由于大气随高度的增加而日趋稀薄,在卫星上旅行数千公里只相当于在地面上旅行8公里。

为证实地面能观测到从轨道卫星上发送回来的光子,此研究小组从意大利马泰拉(Matera)激光测距天文台的望远镜向阿吉沙(Ajisai)人造卫星发射出一束普通的激光。阿吉沙(Ajisai)人造卫星由318面镜片组成,从精确的镜片上反弹回来的单批光子成功地回到了此天文台。

参与此项研究的奥地利维也纳的量子光学和量子信息研究所著名量子物理学家安顿·宰林格(Anton Zeilinger)认为太空至地球的量子通信是一项可行技术。宰林格正在打造一个人造卫星,用于产生纠缠光子,接收信息并对信息编码,之后再将编码的信息反射回来,以建立全球量子通信网络。

量子通信是利用了光子等粒子的量子纠缠原理。量子信息学告诉人们,在微观世界里,不论两个粒子间距离多远,一个粒子的变化都会影响另一个粒子的现象叫量子纠缠,这一现象被爱因斯坦称为“诡异的互动性”。科学家认为,这是一种“神奇的力量”,可成为具有超级计算能力的量子计算机和量子保密系统的基础。

量子通信是经典信息论和量子力学相结合的一门新兴交叉学科,与目前成熟的通信技术相比,量子通信具有巨大的优越性,具有保密性强、大容量、远距离传输等特点。量子通信不仅在军事、国防等领域具有重要的作用,而且会极大地促进国民经济的发展。自1993年美国IBM的研究人员提出量子通信理论以来,美国国家科学基金会、国防高级研究计划局都对此项目进行了深入的研究,欧盟在1999年集中国际力量致力于量子通信的研究,研究项目多达12个。日本邮政省把量子通信作为21世纪的战略项目。

量子通信-中国研究 量子通信中国科技大学合肥微尺度物质科学国家实验室的潘建伟教授及其同事,利用冷原子量子存储技术在国际上首次实现了具有存储和读出功能的纠缠交换,建立了由300米光纤连接的两个冷原子系综之间的量子纠缠。这种冷原子系综之间的量子纠缠可以被读出并转化为光子纠缠以进行进一步的传输和量子操作。该实验成果完美地实现了长程量子通信中亟需的“量子中继器”,向未来广域量子通信网络的最终实现迈出了坚实的一步。

类比于传统的电子通信中为了补偿电信号衰减而进行整形和放大的电子中继器,奥地利科学家在理论上提出,可以通过量子存储技术和量子纠缠交换和纯化技术的结合来实现量子中继器,从而最终实现大规模的长程量子通信。量子存储的实验实现却一直存在着很大的困难。为了解决量子存储问题,国际上人们做了大量的研究工作。比如段路明及其奥地利、美国的合作者就曾于2001年提出了基于原子系综的另一类量子中继器方案。由于这一方案具有易于实验实现的优点,受到了学术界的广泛重视。然而,随后的研究表明,由于这一类量子中继器方案存在着诸如纠缠态对信道长度抖动过于敏感、误码率随信道长度增长过快等严重问题,无法被用于实际的长程量子通信中。

为了解决上述困难,潘建伟、陈增兵和赵博等在理论上提出了具有存储功能、并且对信道长度抖动不敏感、误码率低的高效率量子中继器方案。同时,潘建伟研究小组与德国、奥地利的科学家经过多年的合作研究,在逐步实现了光子—原子纠缠、光子比特到原子比特的量子隐形传态等重要阶段性成果的基础上,最终实验实现了完整的量子中继器基本单元。由于量子中继器实验实现在量子信息研究中的重要意义,


关键词:量子通信原理